

APPROVAL SHEET

MULTILAYER CERAMIC CAPACITORS

Ultra-small Series (6.3V to 50V)

01005 Size

NP0, X7R & X5R Dielectrics

Halogen Free & RoHS Compliance

*Contents in this sheet are subject to change without prior notice.

Multilayer Ceramic Capacitors

1. INTRODUCTION

MLCC consists of a conducting material and electrodes. To manufacture a chip-type SMT and achieve miniaturization, high density and high efficiency, ceramic condensers are used.

01R5 MLCC is performed by high precision technology achieve high capacitance in unit size and ensure the stability and reliability of products.

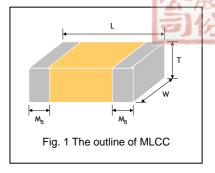
2. FEATURES

- a. High capacitance in unit size.
- b. High precision dimensional tolerances.
- c. Suitable used in high-accuracy automatic mounting machine.

3. APPLICATIONS

- a. Miniature microwave module.
- b. Portable equipments (ex. Mobile phone, PDA).
- c. High frequency circuits.

4. HOW TO ORDER


<u>01R5</u>	<u>N</u>	<u>100</u>	<u>C</u>	<u>160</u>	<u>C</u>	Ī
<u>Size</u>	<u>Dielectric</u>	<u>Capacitance</u>	<u>Tolerance</u>	Rated voltage	<u>Termination</u>	<u>Packaging</u>
		14.	斩月	12		
Inch (mm)	N=NP0	Two significant digits	A =±0.05pF	Two significant digits	C=Cu/Ni/Sn	T=7" reeled
01R5 =	(C0G)	followed by no. of zeros.	B =±0.1pF	followed by no. of		
01005 (0402)	B =X7R	And R is in place of	C =±0.25pF	zeros. And R is in		
	X =X5R	decimal point	D =±0.5pF	place of decimal point.		
		HHI?	F=±1%			
		eg.:	G =±2%	6R3 =6.3 VDC		
		0R5=0.5pF	J =±5%	100 =10 VDC		
		1R0=1.0pF	K =±10%	160=16 VDC		
		100=10x10 ⁰	M =±20%	250 =25 VDC		
		=10pF		500 =50 VDC		
			Chr	010		

Multilayer Ceramic Capacitors

5. EXTERNAL DIMENSIONS

Size Inch (mm)	L (mm)	W (mm)	T (mm)/Syr	nbol	М _в (mm)
01R5 (0402)	0.40±0.02	0.20±0.02	0.20±0.02	V	0.10±0.03

^{*} Reflow soldering only.

6. GENERAL ELECTRICAL DATA

Size		01R5	
Dielectric	NP0	X7R	X5R
Capacitance*	0.2pF to 100pF	100pF to 1000pF	1000pF to 0.1μF
Capacitance tolerance**	Cap≤5pF: A (±0.05pF), B (±0.1pF), C (±0.25pF) 5pF <cap<10pf: (±0.25pf),="" (±0.5pf)="" (±1%),="" (±2%),="" (±5%)<="" c="" cap≥10pf:="" d="" f="" g="" j="" th=""><th>1 (±20%)</th></cap<10pf:>		1 (±20%)
Rated voltage (WVDC)	16V, 25V, 50V	10V	6.3V, 10V
DF / Q ^{#1}	Cap<30pF, Q≥400+20C Cap≥30pF, Q≥1000	≤5 %	≤10 %
Insulation resistance at Ur	≥10GΩ or RxC≥500Ω*F whichever is less		RxC≥50Ω*F
Operating temperature	-55 to +125℃ SSIVE SYST	EM ALLIAS to +125℃	-55 to +85℃
Capacitance change	±30ppm	±15%	<u></u>
Termination	Ni/Sn (lead-free termination)		

^{*} Measured at 30~70% related humidity.

NP0: Apply 0.5~5Vrms, 1.0MHz±10% at the condition of 25℃ ambient temperature.

X7R: Apply 1.0±0.2Vrms, 1.0kHz±10%, at 25°C ambient temperature.

X5R: Apply 0.5±0.2Vrms or 1.0±0.2Vrms ^{#1}, 1.0kHz±10%, at the condition of 25°C ambient temp erature.

#1: Please refer to "RELIABILITY TEST CONDITIONS AND REQUIREMENTS" for detail

^{**} Preconditioning for Class II MLCC: Perform a heat treatment at 150±10°C for 1 hour, then leave in a mbient condition for 24±2 hours before measurement.

	SIZE		01R5	
	DIELECTRIC		NP0	
RAT	ED VOLTAGE (VDC)	16	25	50
	0.2pF (0R2)	V	V	V
	0.3pF (0R3)	V	V	V
	0.4pF (0R4)	V	V	V
	0.5pF (0R5)	V	V	V
	1.0pF (1R0)	V	V	V
	1.5pF (1R5)	V	V	V
	2.0pF (2R0)	V	V	V
	3.0pF (3R0)	V	V	V
	4.0pF (4R0)	V	V	V
	5.0pF (5R0)	V	V	V
	6.0pF (6R0)	V	V	V
ခ်	7.0pF (7R0)	V	V	V
tan	8.0pF (8R0)	V	V	V
äĊ.	9.0pF (9R0)	V	V	V
Capacitance	10pF (100)	V	V	V
O	12pF (120)	V	V	V
	15pF (150)	V	V	V
	18pF (180)	V	V	V
	22pF (220)	V	V	V
	27pF (270)	V	V	V
	33pF (330)	V	V	V
	39pF (390)	V	V	V
	47pF (470)	V	V	V
	56pF (560)	V	V	V
	68pF (680)	V	V	V V
	82pF (820)	V	V	V
	100pF (101)	V	VZZ	V_{N}

	SIZE	01R5
DIELECTRIC		X7R
R.A	TED VOLTAGE (VDC)	10
	100pF (101)	V
Capacitance	150pF (151)	V
itaı	220pF (221)	V
oac	330pF (331)	V
Cal	470pF (471)	V
	1,000pF (102)	V

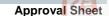
	SIZE	01	R5
	DIELECTRIC	X5R	
R/	ATED VOLTAGE (VDC)	6.3	10
	1,000pF (102)	V	V
	1,500pF (152)		V
	2,200pF (222)		V
	3,300pF (332)		V
9	4,700pF (472)		V
ä	6,800pF (682)		V
i i	0.010µF (103)	V	V
Capacitance	0.015µF (153)		
ပိ	0.022µF (223)	V	
	0.033µF (333)	V	
	0.047µF (473)	V	
	0.068µF (683)		
	0.10µF (104)	V	

- 1. The letter in cell is expressed the symbol of product thickness.
- 2. For more information about products with special capacitance or other data, please contact WTC local representative.

8. PACKAGING DIMENSION AND QUANTITY

Sina	Thickness (mm)/Symbol		Paper tape	
Size			7" reel	13" reel
01R5 (0402)	0.20±0.02	V	20,000	-

Unit: pieces

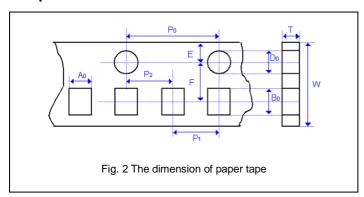

PSA Approval Sheet

9. RELIABILITY TEST CONDITIONS AND REQUIREMENTS

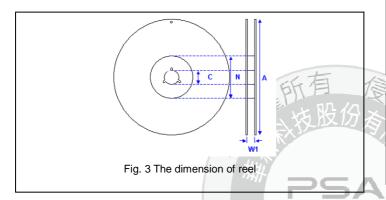
No.	Item	Test Condition	Requirements	=1
1.	Visual and		* No remarkable defect.	- 33
	Mechanical		* Dimensions to conform to individual specification sheet.	
2.	Capacitance	*Test temp.: Room Temperature.	* Shall not exceed the limits given in the detailed spec.	
3.	Q/ D.F. (Dissipation Factor)	Class I: NP0 Cap≤1000pF, 0.5~5Vrms, 1MHz±10% Cap>1000pF, 1.0±0.2Vrms, 1KHz±10% Class II: , X7R & X5R(≥10V) 1.0±0.2Vrms, 1KHz±10% Class II: , X5R(≤6.3V) 0.5±0.2Vrms, 1kHz±10% *Before initial measurement (Class II only): To apply de-aging at 150°C for 1hr then set for 24±2 hrs at room temp .	* NP0: Cap≥30pF, Q≥1000; Cap<30pF, Q≥400+20C X7R: ≤5.0 % X5R: ≤10 %	
4.	Dielectric Strength	* To apply voltage (≤100V) 250%. * Duration: 1 to 5 sec. * Charge and discharge current less than 50mA.	* No evidence of damage or flash over during test.	
5.	Insulation Resistance	*Test temp.: Room Temperature. *To apply rated voltage for max. 120 sec.	* NP0, X7R: ≥10GΩ or RxC≥500Ω-F whichever is smaller. X5R: RxC≥50Ω-F	
6.	Temperature Coefficient	With no electrical load. T.C. Operating Temp NPO -55~125°C at 25°C X7R -55~125°C at 25°C X5R -55~ 85°C at 25°C *Before initial measurement (Class II only): To apply de-aging at 150°C for 1hr then set for 24± 2 hrs at room temp. *Measurement voltage for Class II Cap≤0.01µF: 0.5∨ Cap>0.01µF: 0.2∨	T.C. Capacitance Change NPO Within ±30ppm/°C X7R Within ±15% X5R Within ±15%	
7.	Adhesive Strength of Termination	* Pressurizing force : 1N * Test time: 10±1 sec.	* No remarkable damage or removal of the terminations.	
8.	Vibration Resistance	* Vibration frequency: 10~55 Hz/min. * Total amplitude: 1.5mm * Test time: 6 hrs. (Two hrs each in three mutually perpendicular directions.) * Before initial measurement (Class II only): To apply de-aging at 150°C for 1hr then set for 24±2 hrs at room temp. * Cap./DF(Q) Measurement to be made after de-aging at 150°C for 1hr then set for 24±2 hrs at room temp.	* No remarkable damage. * Cap change and Q/D.F.: To meet initial spec.	
9.	Solderability	* Solder temperature: 235±5℃ * Dipping time: 2±0.5 sec.	95% min. coverage of all metalized area.	
10.	Bending Test	* The middle part of substrate shall be pressurized by means of the pressurizing rod at a rate of about 1 mm per second until the deflection becomes 1 mm and then the pressure shall be maintained for 5±1 sec. * Before initial measurement (Class II only): To apply de-aging at 150°C for 1hr then set for 24±2 hrs at room temp. * Measurement to be made after keeping at room temp. for 24±2 hrs.	* No remarkable damage. * Cap change: NP0: within ±5.0% or ±0.5pF whichever is larger. X7R: within ±12.5% X5R: within ±25.0% (This capacitance change means the change of capacitance u specified flexure of substrate from the capacitance measured bethe test.)	

^{* &}quot;Room condition" Temperature: 15 to 35°C, Relativ e humidity: 25 to 75%, Atmospheric pressure: 86 to 106kPa.

Multilayer Ceramic Capacitors


No.	Item	Test Condition	Requirements	
11.		* Solder temperature: 260±5°C * Dipping time: 10±1 sec * Preheating: 120 to 150°C for 1 minute before imme rse the capacitor in a eutectic solder. * Before initial measurement (Class II only): To apply de-aging at 150°C for 1hr then set for 24±2 hrs at room temp. * Cap. / DF(Q) / I.R. Measurement to be made after de-aging at 150°C for 1hr then set for 24±2 hrs at room temp.	* No remarkable damage. * Cap change: NP0: within ±2.5% or ±0.25pF whichever is larger. X7R: within ±7.5% X5R: within ±15.0% Q/D.F., I.R. and dielectric strength: To meet initial requirements. * 25% max. leaching on each edge.	
12.	Temperature Cycle	* Conduct the five cycles according to the temperatures and time. Step Temp. (C) Time (min.) 1 Min. operating temp. +0/-3 30±3 2 Room temp. 2~3 3 Max. operating temp. +3/-0 30±3 4 Room temp. 2~3 * Before initial measurement (Class II only): To apply de-aging at 150°C for 1hr then set for 24±2 hrs at room temp . * Cap. / DF(Q) / I.R. Measurement to be made after de-aging at 150°C for 1hr then set for 24±2 hrs at room temp .	No remarkable damage. * Cap change: NP0: within ±2.5% or ±0.25pF whichever is larger. X7R: within ±7.5% X5R: within ±15.0% * Q/D.F., I.R. and dielectric strength: To meet initial requirements.	
	Humidity (Steady State)	* Test temp.: 40±2°C * Humidity: 90~95% RH * Test time: 500+24/-0hrs. * Before initial measurement (Class II only): To apply de-aging at 150°C for 1hr then set for 24±2 hrs at room temp. * Cap. / DF(Q) / I.R. Measurement to be made after de-aging at 150°C for 1hr then set for 24±2 hrs at room temp.	X5R: within ±25.0%	
14.	Humidity Load (Damp Heat)	* Test temp.: 40±2°C * Humidity: 90~95%RH * Test time: 500+24/-0 hrs. * To apply voltage: rated voltage. * Before initial measurement (Class II only): To apply de-aging at 150°C for 1hr then set for 24±2 hrs at room temp. * Cap. / DF(Q) / I.R. Measurement to be made after de-aging at 150°C for 1hr then set for 24±2 hrs at room temp.	* No remarkable damage. * Cap change: NP0: within ±7.5% or ±0.75pF whichever is larger. X7R: within ±15.0% X5R: within ±25.0% * Q/D.F. value: NP0: Cap≥30pF, Q≥200; Cap<30pF; Q≥100+10/3C X7R: ≤7.5% X5R: ≤20% * I.R.: NP0, X7R: ≥500MΩ or RxC≥25Ω-F whichever is smaller. X5R: RxC≥5Ω-F.	
15.	High Temperature Load (Endurance)	* Test temp.: NP0, X7R: 125±3°C X5R: 85±3°C * To apply voltage: (1) NP0, X7R: 200% of rated voltage (2) X5R: 10V: 150 % of rated voltage 6.3V: 100 % of rated voltage * Test time: 1000+24/-0 hrs. * Before initial measurement (Class II only): To apply de-aging at 150°C for 1hr then set for 24±2 hrs at room temp. * Cap. / DF(Q) / I.R. Measurement to be made after de-aging at 150°C for 1hr then set for 24±2 hrs at room temp. ** De-rating conditions:	* No remarkable damage. * Cap change: NP0: within ±3.0% or ±0.3pF whichever is larger. X7R: within ±12.5% X5R: within ±25.0%	

^{* &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 25 to 75%, Atmospheric pressure: 86 to 106kPa.


Approval Sheet

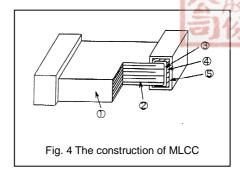
APPENDIXES

■ Tape & reel dimensions

Ph. at a state of the state of
01R5
V
0.25 +/-0.05
0.45 +/-0.05
≦0.50
-
8.00 +/-0.30
4.00 +/-0.10
40.00 +/-0.10
2.00 +/-0.05
2.00 +/-0.05
1.50 +0.1/-0
-
1.75 +/-0.10
3.50 +/-0.05

Size	01R5
Reel size	7"
C	13.0±0.5
- W ₁	10.0±1.5
Y A	178.0±2.0
TIIN	60.0+1.0/-0

■ Example of customer label


^{*}Customized label is available upon request

- a. Customer name
- b. WTC order series and item number
- c. Customer P/O
- d. Customer P/N
- e. Description of product
- f. Quantity
- g. Bar code including quantity & WTC P/N or customer
- h. WTC P/N
- i. Shipping date
- j. Order bar code including series and item numbers
- k. Serial number of label

Approval Sheet

Constructions

No.	Name		NP0	X7R, X5R
①	Ceramic material		CaZrO₃ based	BaTiO ₃ based
2	Inner electrode		Ni	
3		Inner layer	C	u
4	Termination	Middle layer	Ni	
(5)		Outer layer	Sn (Matt)	

■ Storage and handling conditions

- (1) To store products at 5 to 40°C ambient temperature and 20 to 70%. related humidity conditions; MSL Level 1.
- (2) The product is recommended to be used within one year after shipment. Check solderability in case of shelf life extension is needed.

Cautions:

- a. The corrosive gas reacts on the terminal electrodes of capacitors, and results in the poor solderability. Do not store the capacitors in the ambience of corrosive gas (e.g., hydrogen sulfide, sulfur dioxide, chlorine, ammonia gas etc.)
- b. In corrosive atmosphere, solderability might be degraded, and silver migration might occur to cause low reliability.
- c. Due to the dewing by rapid humidity change, or the photochemical change of the terminal electrode by direct sunlight, the solderability and electrical performance may deteriorate. Do not store capacitors under direct sunlight or dewing condition. To store products on the shelf and avoid exposure to moisture.

Recommended soldering conditions

The lead-free termination MLCCs are not only to be used on SMT against lead-free solder paste, but also suitable against lead-containing solder paste. If the optimized solder joint is requested, increasing soldering time, temperature and concentration of N_2 within oven are recommended.

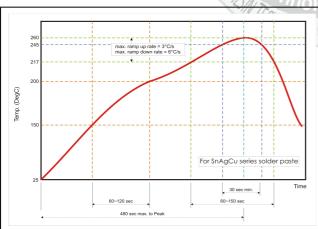


Fig. 5 Recommended reflow soldering profile for SMT process with SnAgCu series solder paste.