

# APPROVAL SHEET

WF06A, WF08A, WF12A, WF10A, WF20A, WF25A Jumper, 1 ~ 1Mohm, ±5%, ±1% Triple Power Chip Resistors Size 0603 1/3W, 0805 1/2W, 1206 3/4W, 1210 3/4W, 2010 1.5W, 2512 3W



#### **FEATURE**

- 1. Small size and light weight
- 2. High reliability and stability
- 3. Reduced size of final equipment
- 4. High power
- 5. RoHS compliant and Lead free products

#### **APPLICATION**

- High accuracy dc-power supply
- Digital multi-meter
- Telecommunication
- Computer
- Automotive industry
- Medical and military equipment

#### **DESCRIPTION**

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to nominated value within tolerance which controlled by laser trimming of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is a Tin (lead free) alloy.

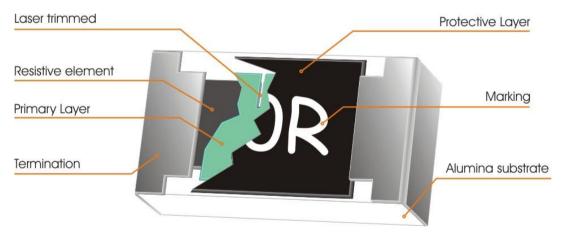



Fig 1. Construction of Chip-R

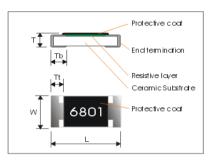


## **QUICK REFERENCE DATA**

| Туре   | Size | Power      | Max.      | Max.     | Resistance | Temperature | Resistance |       | Standard   |
|--------|------|------------|-----------|----------|------------|-------------|------------|-------|------------|
|        |      | Rating     | RCWV      | Overload | Tolerance  | Coefficient | Range      |       | Resistance |
|        |      | at 70°℃    |           | Voltage  |            | ( ppm/℃)    | Min.       | Max.  | Values     |
|        |      |            |           |          | ±1%(F)     | ±100ppm     | 10Ω        | 1ΜΩ   | E96/E24    |
| WF06A  | 0603 | 1/3W       | 75V       | 125V     | ±1%(F)     | ±200ppm     | 1Ω         | 9.76Ω | E96/E24    |
|        |      |            |           |          | ±5%(J)     | ±200ppm     | 1Ω         | 1ΜΩ   | E24        |
|        |      |            |           |          | ±1%(F)     | ±100ppm     | 10Ω        | 1ΜΩ   | E96/E24    |
| WF08A  | 0805 | 1/2W       | 200V      | 300V     | ±1%(F)     | ±150ppm     | 1Ω         | 9.76Ω | E96/E24    |
|        |      |            |           |          | ±5%(J)     | ±200ppm     | 1Ω         | 1ΜΩ   | E24        |
| N/E404 | 1206 | 6 3/4W     | 3/4W 250V | 500V     | ±1%(F)     | ±100ppm     | 1Ω         | 1ΜΩ   | E96/E24    |
| WF12A  |      |            |           |          | ±5%(J)     | ±200ppm     | 1Ω         | 1ΜΩ   | E24        |
| WE404  | 4040 | 0/414/     | 0501/     | 500)/    | ±1%(F)     | ±100ppm     | 1Ω         | 1ΜΩ   | E96/E24    |
| WF10A  | 1210 | 3/4W       | 4W 250V   | 500V     | ±5%(J)     | ±200ppm     | 1Ω         | 1ΜΩ   | E24        |
| MESOA  | 0040 | 4.514/     | 0501/     | 500)/    | ±1%(F)     | ±100ppm     | 1Ω         | 1ΜΩ   | E96/E24    |
| WF20A  | 2010 | 010   1.5W | / 250V    | 500V     | ±5%(J)     | ±200ppm     | 1Ω         | 1ΜΩ   | E24        |
| MEGEA  | 0540 | 214/       | 050)      | 5001/    | ±1%(F)     | ±100ppm     | 1Ω         | 1ΜΩ   | E96/E24    |
| WF25A  | 2512 | 3W         | W 250V    | 500V     | ±5%(J)     | ±200ppm     | 1Ω         | 1ΜΩ   | E24        |

Application Note: RCWV=(P×R)1/2 or Max. RCWV listed above, whichever is lower.

 $\mathsf{RCWV} : \mathsf{Working} \ \mathsf{Voltage} \ (\mathsf{V}) \cdot \mathsf{P} : \mathsf{Rated} \ \mathsf{Power} \ (\mathsf{W}) \cdot \mathsf{R} : \mathsf{Resistance} \ \mathsf{Value} \ (\Omega)$ 

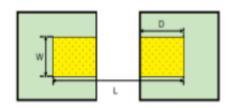

Solder-pad and trace size should be evaluated and board surface temperature should not exceed 105℃ when applied full rated power.

## **High Current Power Jumpers:**

| Туре  | Size | Description       | Max.<br>Rated Current | Max.<br>Overload Current | Resistance |
|-------|------|-------------------|-----------------------|--------------------------|------------|
| WF06A | 0603 | Zero Ohm · Jumper | 6 A                   | 12 A                     | ≦10mΩ      |
| WF08A | 0805 | Zero Ohm · Jumper | 7 A                   | 14 A                     | ≦10mΩ      |
| WF12A | 1206 | Zero Ohm , Jumper | 9 A                   | 18 A                     | ≦10mΩ      |
| WF20A | 2010 | Zero Ohm · Jumper | 12 A                  | 24 A                     | ≤10mΩ      |
| WF25A | 2512 | Zero Ohm · Jumper | 14 A                  | 28 A                     | ≤10mΩ      |



## **DIMENSIONS** (unit: mm)




| Туре | WF06A           | WF08A           | WF12A           | WF10A           | WF20A           | WF25A           |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| L    | $1.60 \pm 0.10$ | $2.00\pm0.10$   | $3.10\pm0.10$   | 3.10 ± 0.10     | $5.00 \pm 0.20$ | $6.40\pm0.20$   |
| W    | $0.80 \pm 0.10$ | 1.25 ± 0.10     | 1.60 ± 0.10     | 2.60 ± 0.10     | $2.50 \pm 0.20$ | $3.20\pm0.25$   |
| Tt   | $0.30 \pm 0.20$ | $0.40 \pm 0.20$ | $0.50 \pm 0.25$ | $0.50 \pm 0.25$ | $0.65 \pm 0.25$ | $0.45 \pm 0.25$ |
| Tb   | $0.30 \pm 0.20$ | $0.40 \pm 0.20$ | $0.50\pm0.25$   | $0.50 \pm 0.25$ | $0.60 \pm 0.25$ | $1.80 \pm 0.25$ |
| Т    | $0.45 \pm 0.10$ | $0.50 \pm 0.10$ | $0.55 \pm 0.10$ | $0.55 \pm 0.10$ | $0.60 \pm 0.10$ | 1.10 ± 0.20     |

#### **RECOMMENDED SOLDERING PAD DIMENSIONS:**

| Туре  | W    | D    | L    |
|-------|------|------|------|
| WF06A | 0.90 | 1.00 | 3.00 |
| WF08A | 1.30 | 1.15 | 3.50 |
| WF12A | 1.80 | 1.30 | 4.70 |
| WF10A | 3.00 | 1.30 | 4.70 |
| WF20A | 3.00 | 1.50 | 6.80 |
| WF25A | 3.70 | 2.45 | 7.60 |

#### Unit:mm



#### **MARKING**

E24  $\pm 5\%$  : 3 Digits marking to identify the resistance value 0603/0805/1206

301

 $301 \rightarrow 30 \times 10^{1} = 300 \Omega$ 

E24/E96  $\pm1\%$  : 4 Digits marking to identify the resistance value  $\underline{0805/1206}$ 

1542

$$1542 \rightarrow 154 \times 10^2 = 15.4 \text{ K}\Omega$$



E24  $\pm 1\%$ : 3 Digits marking to identify the resistance value  $\underline{0603}$ 



E96  $\pm 1\%$  : 3 Digits marking to identify the resistance value 0603

01B  $\rightarrow$  Refer 0603 marking table = 1 K $\Omega$ 

# Appendix

## ■ 0603 1% Marking Table (Table 1)

| Code | E48 | E96 |
|------|-----|-----|------|-----|-----|------|-----|-----|------|-----|-----|
| 01   | 100 | 100 | 25   | 178 | 178 | 49   | 316 | 316 | 73   | 562 | 562 |
| 02   | l   | 102 | 26   |     | 182 | 50   |     | 324 | 74   |     | 576 |
| 03   | 105 | 105 | 27   | 187 | 187 | 51   | 332 | 332 | 75   | 590 | 590 |
| 04   | l   | 107 | 28   |     | 191 | 52   |     | 340 | 76   |     | 604 |
| 05   | 110 | 110 | 29   | 196 | 196 | 53   | 348 | 348 | 77   | 619 | 619 |
| 06   | l   | 113 | 30   |     | 200 | 54   |     | 357 | 78   |     | 634 |
| 07   | 115 | 115 | 31   | 205 | 205 | 55   | 365 | 365 | 79   | 649 | 649 |
| 08   | l   | 118 | 32   |     | 210 | 56   |     | 374 | 80   |     | 665 |
| 09   | 121 | 121 | 33   | 215 | 215 | 57   | 383 | 383 | 81   | 681 | 681 |
| 10   | l   | 124 | 34   |     | 221 | 58   |     | 392 | 82   |     | 698 |
| 11   | 127 | 127 | 35   | 226 | 226 | 59   | 402 | 402 | 83   | 715 | 715 |
| 12   | l   | 130 | 36   |     | 232 | 60   |     | 412 | 84   |     | 732 |
| 13   | 133 | 133 | 37   | 237 | 237 | 61   | 422 | 422 | 85   | 750 | 750 |
| 14   | l   | 137 | 38   |     | 243 | 62   |     | 432 | 86   |     | 768 |
| 15   | 140 | 140 | 39   | 249 | 249 | 63   | 442 | 442 | 87   | 787 | 787 |
| 16   | l   | 143 | 40   |     | 255 | 64   |     | 453 | 88   |     | 806 |
| 17   | 147 | 147 | 41   | 261 | 261 | 65   | 464 | 464 | 89   | 825 | 825 |
| 18   | l   | 150 | 42   |     | 267 | 66   |     | 475 | 90   |     | 845 |
| 19   | 154 | 154 | 43   | 274 | 274 | 67   | 487 | 487 | 91   | 866 | 866 |
| 20   | l   | 158 | 44   |     | 280 | 68   |     | 499 | 92   |     | 887 |
| 21   | 162 | 162 | 45   | 287 | 287 | 69   | 511 | 511 | 93   | 909 | 909 |
| 22   | l   | 165 | 46   |     | 294 | 70   |     | 523 | 94   |     | 931 |
| 23   | 169 | 169 | 47   | 301 | 301 | 71   | 536 | 536 | 95   | 953 | 953 |
| 24   |     | 174 | 48   |     | 309 | 72   |     | 549 | 96   |     | 976 |
| Code |     | A   | В    | C D | Е.  | F    | G   | н   | X    | Y   | Z   |

 Code
 A
 B
 C
 D
 E
 F
 G
 H
 X
 Y
 Z

 Multiplier
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °
 10 °</t



#### **FUNCTIONAL DESCRIPTION**

#### Product characterization

Standard values of nominal resistance are taken from the E96&E24 series for resistors with a tolerance of  $\pm 1\%, \pm 5\%$ . The values of the E96/E24 series are in accordance with "IEC publication 60063".

#### **Derating**

The power that the resistor can dissipate depends on the operating temperature; see Fig.2

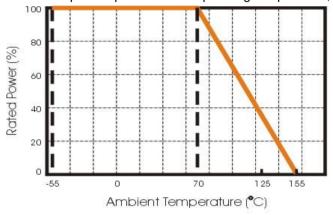



Fig.2 Maximum dissipation in percentage of rated power As a function of the ambient temperature

#### STORAGE TEMPERATURE

... Products are recommended to be used up within one year as ensured shelf life.

Check solder ability in case shelf life extension is needed.

... To store products with following condition:

Temperature: 5 to 40°C; Humidity: 20 to 70% relative humidity.

#### **SOLDERING CONDITION**

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

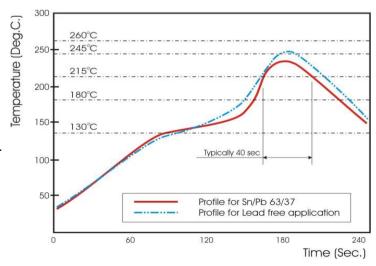



Fig 3. Infrared soldering profile for Chip Resistors



### **CATALOGUE NUMBERS**

The resistors have a catalogue number starting with.

| WF06                                                                        | Α                                                                                               | 510_                                                                                                         | F                                 | Т                                                              | L                                         |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------|-------------------------------------------|
| Size code WF06: 0603 WF08: 0805 WF12: 1206 WF10: 1210 WF20: 2010 WF25: 2512 | Type code A: Triple Power 0603 = 1/3W 0805 = 1/2W 1206 = 3/4W 1210 = 3/4W 2010 = 1.5W 2512 = 3W | Resistance code 5% E24: 2 significant digits followed by No. of zeros e.g.: 30hm =3R0 100hm =100 56Kohm =563 | Tolerance J: ±5% F: ±1% P: Jumper | Packaging code T: 7" Reeled taping Z: 7" Reeled taping (WF25A) | Termination code  L = Sn base (lead free) |
|                                                                             |                                                                                                 | 1% E24+E96:<br>3 significant digits followed<br>by No. of zeros<br>100Ω = 1000<br>37.4KΩ = 3742              |                                   |                                                                |                                           |

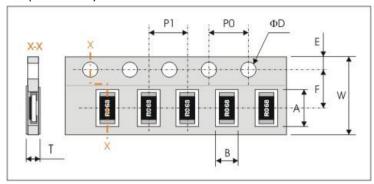
■ Reeled packaging : WF06A, WF08A, WF12A WF10A 8mm width paper taping 5,000pcs per 7" reel.

■ WF20A 12mm width pc emboss taping 4,000pcs per 7" reel.

■ WF25A 12mm width pc emboss taping 3,000pcs per 7" reel.



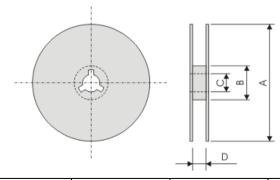
## **TEST AND REQUIREMENTS**


Basic specification: JIS C 5201-1: 1998

| TEST                                                   | PROCEDURE                                                                                                                                                                                                                                                                                             | REQUIREMENT                                                                                                                                                                                                |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clause 4.8 Temperature Coefficient of Resistance (TCR) | Natural resistance change per change in degree centigrade. $\frac{R_2-R_1}{R_1(t_2-t_1)}\times 10^6 \ \ \text{(ppm/°C)}$ $\text{R}_1: \text{Resistance at reference temperature}$ $\text{R}_2: \text{Resistance at test temperature}$ $\text{t}_1: 25^\circ\text{C}+1^\circ\text{C}-1^\circ\text{C}.$ | Refer to quick reference data for T.C.R specification                                                                                                                                                      |
| Clause 4.18 Resistance to soldering heat(R.S.H)        | Un-mounted chips completely immersed for 10±1second in a SAC solder bath at 260°C±5°C.                                                                                                                                                                                                                | No visible damage $ \text{J: } \Delta R/R \text{ max. } : \leq \pm (1\% + 0.05\Omega) $ $ \text{F: } \Delta R/R \text{ max. } : \leq \pm (0.5\% + 0.05\Omega) $ $ \text{Jumper: } \leq 10 \text{m}\Omega $ |
| Clause 4.17<br>Solderability                           | Un-mounted chips completely immersed for 3±0.5 second in a SAC solder bath at 245°C±2°C.                                                                                                                                                                                                              | Good tinning (>95% covered) No visible damage                                                                                                                                                              |
| Clause 4.33 Bending strength                           | Resistors mounted on a 90mm glass epoxy resin PCB(FR4); bending : 2 mm, once for 10 seconds.                                                                                                                                                                                                          | No visible damage $ \begin{tabular}{ll} J: $\Delta R/R$ max. $\le \pm (1\% + 0.05\Omega)$ \\ F: $\Delta R/R$ max. $:$ $\le \pm (0.5\% + 0.05\Omega)$ \\ Jumper: $\le 10m\Omega$ \\ \end{tabular} $         |
| Clause 4.13<br>Short time overload                     | 5 x Rated power for 5 sec. Measure resistance after 30 minutes.                                                                                                                                                                                                                                       | J: $\Delta$ R/R max.: $\leq \pm (2\% + 0.05\Omega)$<br>F: $\Delta$ R/R max. : $\leq \pm (1\% + 0.05\Omega)$<br>Jumper : $\leq 10$ m $\Omega$                                                               |
| Clause 4.25<br>Load life (endurance)                   | 1000 +48/-0 hours, loaded with RCWV or Vmax in chamber controller 70±2°C, 1.5 hours on and 0.5 hours off.                                                                                                                                                                                             | No visible damage $ \text{J: } \Delta R/R \text{ max. } \leq \pm (3\% + 0.05\Omega) $ $ \text{F: } \Delta R/R \text{ max. } : \leq \pm (1\% + 0.05\Omega) $ $ \text{Jumper: } \leq 10 \text{m}\Omega $     |
| Clause 4.24<br>Load life in Humidity                   | 1000 +48/-0 hours, loaded with RCWV or Vmax in humidity chamber controller at 40°C±2°C and 90~95% relative humidity, continuous on.                                                                                                                                                                   | No visible damage $ \begin{tabular}{ll} J: $\Delta R/R$ max. $\le \pm (3\% + 0.05\Omega)$ \\ F: $\Delta R/R$ max. $:$ $\le \pm (1\% + 0.05\Omega)$ \\ Jumper: $\le 10m\Omega$ \\ \end{tabular} $           |
| Clause 4.19 Temperature cycling                        | <ol> <li>30 minutes at -55°C±3°C,</li> <li>2~3 minutes at 20°C+5°C-1°C,</li> <li>30 minutes at +155°±3°C,</li> <li>2~3 minutes at 20°C+5°C-1°C,</li> <li>Total 5 continuous cycles.</li> </ol>                                                                                                        | No visible damage<br>J: $\Delta R/R$ max. $\leq \pm (1\%+0.05\Omega)$<br>F: $\Delta R/R$ max. : $\leq \pm (0.5\%+0.05\Omega)$<br>Jumper : $\leq 10 m\Omega$                                                |
| Clause 4.6<br>Insulation Resistance                    | Apply the insulation voltage 100+15Vdc for 1minute.                                                                                                                                                                                                                                                   | R≥1GΩ                                                                                                                                                                                                      |



## **PACKAGING**


## Tape specifications (unit :mm)



| Series No. | А         | В         | W          | F         | Е         |
|------------|-----------|-----------|------------|-----------|-----------|
| WF06A      | 1.90±0.20 | 1.10±0.20 | 8.00±0.30  | 3.50±0.05 | 1.75±0.10 |
| WF08A      | 2.40±0.20 | 1.65±0.20 | 8.00±0.30  | 3.50±0.05 | 1.75±0.10 |
| WF12A      | 3.60±0.20 | 2.00±0.20 | 8.00±0.30  | 3.50±0.05 | 1.75±0.10 |
| WF10A      | 3.60±0.20 | 3.00±0.20 | 8.00±0.30  | 3.50±0.05 | 1.75±0.10 |
| WF20A      | 5.50±0.20 | 2.80±0.20 | 12.00±0.30 | 5.50±0.05 | 1.75±0.10 |
| WF25A      | 6.70±0.20 | 3.50±0.20 | 12.00±0.30 | 5.50±0.05 | 1.75±0.10 |

| Series No. | P1        | P0        | ΦD                                    | Т         |
|------------|-----------|-----------|---------------------------------------|-----------|
| WF06A      | 4.00±0.10 | 4.00±0.10 | $\Phi$ 1.50 $^{+0.1}_{-0.0}$          | Max. 0.80 |
| WF08A      | 4.00±0.10 | 4.00±0.10 | Ф1.50 <sup>+0.1</sup> <sub>-0.0</sub> | Max. 1.00 |
| WF12A      | 4.00±0.10 | 4.00±0.10 | Ф1.50 <sup>+0.1</sup>                 | Max. 1.00 |
| WF10A      | 4.00±0.10 | 4.00±0.10 | Ф1.50 <sup>+0.1</sup> <sub>-0.0</sub> | Max. 1.00 |
| WF20A      | 4.00±0.10 | 4.00±0.10 | Ф1.50 <sup>+0.1</sup>                 | Max. 1.00 |
| WF25A      | 4.00±0.10 | 4.00±0.10 | Ф1.50 <sup>+0.1</sup>                 | Max. 1.50 |

## **Reel dimensions**



unit: mm

| Symbol       | Α          | В         | С        | D        |
|--------------|------------|-----------|----------|----------|
| 7" 8mm tape  | Φ178.0±2.0 | Φ60.0±1.0 | 13.0±0.2 | 9.0+1/-0 |
| 7" 12mm tape | Ф178.0±2.0 | Φ60.0±1.0 | 13.0±0.5 | 13.8±1.5 |