

APPROVAL SHEET

WR02X(W)_J

±5%, ±1%

Thick Film General purpose chip resistors Automotive AEC Q-200 compliant Size 0201

*Contents in this sheet are subject to change without prior notice.

FEATURE

- 1. Automotive grade AEC Q-200 compliant with 100% CCD visual inspection
- 2. High reliability and stability
- 3. Reduced size of final equipment
- 4. Suitable for high density print circuit board assembly
- 5. Higher component and equipment reliability
- 6. Lead free product

APPLICATION

- Automotive
- Mobile phone
- PDA
- Camcorders
- Palmtop computers
- Hybrid module

DESCRIPTION

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to nominated value within tolerance which controlled by laser trimming of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is a pure Tin.

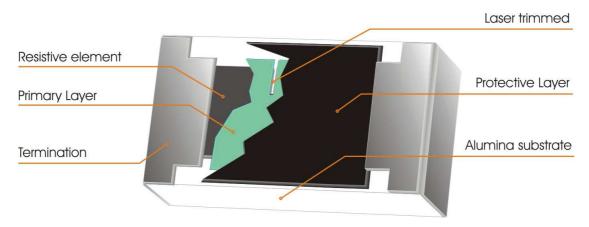
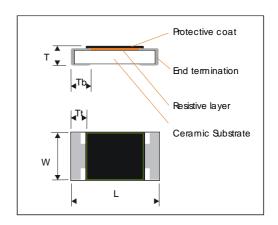


Fig 1. Construction of Chip-R WR02X

QUICK REFERENCE DATA

Item	General Specification		
Series No.	WR02X(W)_J		
Size code	02	01(0603)	
Resistance Range	1Ω~10M Ω (±5% tolerance), Jumper		
	1Ω~ 10MΩ	(±1% tolerance)	
Resistance Tolerance	±1%	±5%	
	E96/E24	E24	
TCR (ppm/°C)	10Ω - 10MΩ, ≤±200ppm		
	4.02 - 9.76Ω, +350 ~ -100ppm		
	1 - 3.92Ω, +600 ~ -200ppm		
Max. dissipation @ T _{amb} =70°C	1/20 W		
Max. Operation Voltage	25V		
Max. Overload Voltage	50V		
Operation temperature	-55 ~ +125'C		


Note:

- 1. This is the maximum voltage that may be continuously supplied to the resistor element, see "IEC publication 60115-8"
- 2. Max. Operation Voltage: So called RCWV (Rated Continuous Working Voltage) is determined by

 $RCWV = \sqrt{RatedPower \times Resistance Value}$ or Max. RCWV listed above, whichever is lower.

DIMENSION(unit:mm)

	WR02X(W)			
L	0.60 ± 0.03			
W	0.30 ± 0.03			
Т	0.23 ± 0.03			
Tb 0.15 ± 0.05				
Tt	0.10 ± 0.05			

MARKING

WR02X(W) has no marking.

FUNCTIONAL DESCRIPTION

Product characterization

Standard values of nominal resistance are taken from the E24/E96 series for resistors with a tolerance of $\pm 5\%$ & $\pm 1\%$. The values of the E24/E96 series are in accordance with "IEC publication 60063"

Derating

The power that the resistor can dissipate depends on the operating temperature; see Fig.2

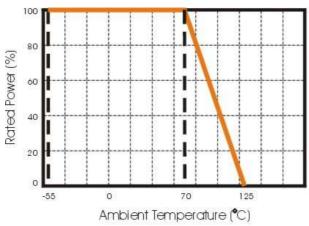


Figure 2. Maximum dissipation in percentage of rated power

As a function of the ambient temperature

MOUNTING

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.

The end terminations guarantee a reliable contact.

SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

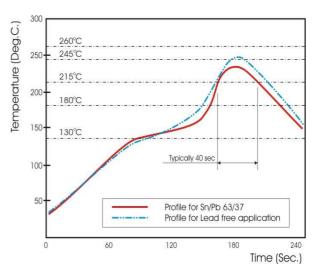
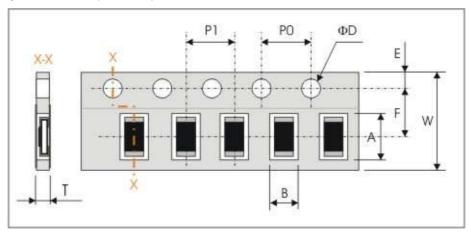


Fig 3. Infrared soldering profile for Chip Resistors WR02X(W)

CATALOGUE NUMBERS

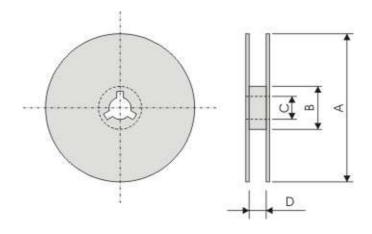
The resistors have a catalogue number starting with :

WR02	Х	472_	J	Α	L	J
Size code	Type code	Resistance code	Tolerance	Packaging code	Termination code	Special code
WR02:0201	X : Normal W : 1% For $<10\Omega$ / $>1M\Omega$	5%, E24: 2 significant digits followed by no. of zeros $100\Omega = 101_$ $10KΩ = 103$ 1%, E24+E96: 3 significant digits followed by no. of zeros $100\Omega = 1000$ $37.4KΩ = 3742$	J:±5% F:±1% P:Jumper	A : 7" Reeled (15Kpcs/Reel) T : 7" Reeled (10Kpcs/Reel) D : 7" Reeled (20Kpcs/Reel) G : 13" Reeled (70Kpcs/Reel)	L = Sn base (lead free)	J = Automotive grade & 100% CCD visual inspection


TEST AND REQUIREMENTS (AEC Q-200 REV.D 2010)

TEAT	PROCEDURE (TEXT METURE	REQUIREMENT		
TEST	PROCEDURE / TEST METHOD	Resistor	0Ω	
Electrical Characteristics	- DC resistance values measurement	Within the specified tolerance		
	- Temperature Coefficient of Resistance (T.C.R)	Refer to "QUICK		
JISC5201-1: 1998 Clause 4.8	Natural resistance change per change in degree centigrade.	REFERENCE DATA"		
	$\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/°C)} t_1 : 20\text{°C} + 5\text{°C} - 1\text{°C}$		<50mΩ	
	R_1 : Resistance at reference temperature (20°C+5°C/-1°C)			
	R₂: Resistance at test temperature (-55℃ or +125℃)			
Resistance to soldering heat(R.S.H)	Un-mounted chips completely immersed for 10±1second in a SAC solder bath at 260°C±5°C	Δ R/R max. \pm (1%+0.05 Ω) no visible damage	<50mΩ	
AEC Q200-15		no noisie damage		
Solderability	a. 4hrs @ 155'C, 235'C, 5 secs	95% coverage min., good tinnii	ng and no	
AEC Q200-18	b. 8hrs steam, 235'C, 5secs	visible damage		
Temperature cycling	30 minutes at -55°C±3°C, 2~3 minutes at 20℃+5℃-1℃,	Δ R/R max. ±(1%+0.05Ω)	< 50mΩ	
AEC Q200-4	30 minutes at +125°C±3°C, 2~3 minutes at 20℃+5℃-1℃, total 1000 continuous cycles	∆R/R IIIax. ±(1%+0.05\2)	< 5011152	
Bias Humidity	1000 +48/-0 hours, in humidity chamber controller at +85	Δ R/R max. \pm (5%+0.10 Ω)	. 500	
AEC Q200-7	°C/85%RH, 10% rated power		< 50mΩ	
Operational Life MIL-STD-202 method	1000+48/-0 hours; 35% of operation power, 125±2°C	Δ R/R max. \pm (5%+0.10 Ω)	< 50mΩ	
108	1000 hrs @ 125°C up powered	AD/D may 1/50/ : 0.400)		
High Temperature	1000 hrs @ 125°C, un-powered	Δ R/R max. ±(5%+0.10 Ω)	< 50mΩ	
Exposure AEC Q200-3				
Bending strength	Resistors mounted on a 90mm glass epoxy resin	No visual damaged.		
AEC Q200 -21	PCB(FR4), bending once 2mm for 60sec.	Δ R/R max. \pm (1%+0.05 Ω)	< 50mΩ	
Terminal strength	Proceurizing force: 2N. Test time: 10.11cc	No remarkable damage or remo	wal of the	
AEC Q200-22	Pressurizing force: 3N, Test time: 10±1sec.	terminations	oval of the	
	5 de fau 00 min. 40 aveles analyst 0 arientations		. 500	
Vibration	5 g's for 20 min, 12 cycles each of 3 orientations	\triangle R/R max \leq ±(1%+0.05 Ω)	< 50mΩ	
AEC Q200-14		and no visible damage		
Mechanical Shock	Shock machine, half sine,	\triangle R/R max \leq ±(1%+0.05 Ω)	$<$ 50m Ω	
AEC Q200-13	100G, 6msec, XX'YY'ZZ', 10times each	and no visible damage		
ESD (HBM)	Human body model, 1.5 Kohm, 100 pF, 0.4KV	Δ R/R max. \pm (5%+0.10 Ω)	< 50mΩ	
AEC Q200-002				

PACKAGING


Paper Tape specifications (unit :mm)

Series No.	А	В	W	F	E
WR02X	0.67±0.05	0.37±0.05	8.00±0.20	3.50±0.05	1.75±0.10

Series No.	P1	P0	ΦD	Т
WR02X	2.00±0.05	4.00±0.05	Ф1.50 ^{+0.1} _{-0.0}	0.45±0.05

Reel dimensions

Symbol	Α	В	С	D
7" Reel	Φ178.0±0.2	Φ60.0±1.0	13.0±0.2	9.0±0.5
13" Reel	Ф330.0±2.0	Φ100.0±1.0	13.0±0.2	9.0±0.5

Taping quantity and Tape material

- Chip resistors 10,000 / 15,000 / 20,000 pcs 7" Reel, Paper tape.
- Chip resistors 70,000 pcs 13" Reel, Paper tape.